Getting The Most Out Of Your Hemocytometer

Peter Hoey BSG CraftBrewing March 28, 2013

Introduction

- Brewers have access to the same set of ingredients.
- How you combine them and control the process is what makes your beer unique.
- Monitoring yeast health and pitching rates is one more point of control to fine tune your process.

Getting Started

- The technology is simple and relatively inexpensive
- A hemocytometer: \$15-30
- A microscope: \$50-200
 - 400x objective
- 1 ml transfer pipet
- A scale that can measure grams accurately <u>or</u> a 100 ml volumetric flask
- A Pasteur pipette or a fine tipped glass pipet
- A hand held counter
- Pipette Pump
- Methyene Blue Stain

What is a Hemocytometer?

- A slide that you can look at under a microscope
- Chamber has a known volume of 0.0001 ml³

Photo by Jeffery M. Vinocur

What is a Hemocytometer?

- Laser etched in the surface are gridlines to aid in counting cells
- Cell counting occurs in the matrix where the triple lines converge

Make it Easy

- If the equipment is not accessible and ready to use you and your brewers won't count cells regularly.
 - Not everyone has a lab.
 - Or an office.
 - Or a desk.
- Build and maintain a kit.
 - Use a tray, tool box to store everything.
- Develop or borrow a spreadsheet to calculate pitching quantities.

- Sampling of yeast slurry
 - Yeast should be stored in a vessel that make mixing and sampling easy.
 - Sampling needs to be done in a sanitary manner.
- Sample Size
 - Will you pitch by weight or by volume?
 - 1 ml if pitching by volume or 1 g if pitching by weight.

Create a dilution

- 1:100 is target using 1 part yeast slurry and
 99 parts distilled water
- 1 gram of slurry to 99 grams of water
- 1 ml of slurry to 99 ml of water
- Include the methylene blue as part of the dilution to determine viability

- A word about Viability
 - Viabilities below 95% may not be accurate
 - The test only demonstrates the yeasts ability to metabolize the methylene blue stain
 - We are interested in the yeasts ability to ferment wort
 - The test measures viability but what we are really interested in is *vitality*

- Load the hemocytometer
 - Make sure the hemocytometer is clean and dry
 - Place a lens on the hemocytometer
 - Take the Pastuer pipette and fill with dilution
 - Create a droplet at the tip of the pipette
 - Touch the droplet to the edge of the slide and the and the sample will wick into the chamber

http://commons.wikimedia.org/wiki/File:Hemocytometer.jpg

Counting Cells

- No need to count every cell in the chamber
- The grid is 5 x 5 of the large squares
- Use a hand held counter.
- Budding cells are counted as <u>one</u> cell unless the bud is at least one half the size of the mother.

- Counting Cells
 - Count 5 of the 25squares in the5 x 5 grid.

- Move methodically through the grid
- If the cell touches to top or right line of the grid do not count.
- If the cell touches the bottom or left line of the grid count it.

Determining Pitching Rate

- Traditional pitching rates
 - 1 million cells per ml per degree plato for ale
 - 2 million cells per ml per degree plato for lager

°Plato wort x
$$\frac{1 \times 10^6 \text{ viable cells/ml}_{wort}}{1 \text{ °Plato}} = \text{viable cells/ml}_{wort}$$

$$bbl_{wort} \times \frac{117.35 L_{wort}}{1 bbl_{wort}} \times \frac{1,000 ml_{wort}}{1 L_{wort}} x \frac{vialble cells}{ml_{wort}}$$

$$= Total cells needed$$

The Calculation:

$$\frac{(viable\ cell\ count)(5)(dilution)}{(chamber\ volume)} = \frac{yeast\ cells}{ml\ or\ g_{slurry}}$$

- Viable cells are what we are interested in
- The number 5 in the equation takes our sample of 5 squares up to 25 squares to represent the whole grid
- The dilution factor in this example would be 100 because we did a 100:1 dilution.

Determining Pitching Rate

$$\frac{Total \ Cells \ Needed}{yeast \ cells/ml_{slurry}} = Volume \ of \ yeast \ slurry \ required \ (in \ ml)$$

$$\frac{Total \ Cells \ Needed}{yeast \ cells/g_{slurry}} = Volume \ of \ yeast \ slurry \ required \ (in \ g)$$

Convert to gallons or pounds for easier use:

$$ml_{slurry} \times \frac{1 \ gal_{slurry}}{3785 \ ml_{slurry}} = gal_{slurry}$$

$$g_{slurry} \times \frac{1 \ lb_{slurry}}{453.592 \ g_{slurry}} = \ lbs_{slurry}$$

Calculation Example

Yeast requirements for brewing 15 barrels of 13 plato wort of ale 13 million cells per ml would be target pitching rate

$$15 \; bbl_{wort} \times \; \frac{117.35 \; L_{wort}}{1 \; bbl_{wort}} \times \; \frac{1,000 \; ml_{wort}}{1 \; L_{wort}} x \; \frac{1.3 \; x \; 10^7}{ml_{wort}} = 2.288 \; x \; 10^{13} \; cells \; needed$$

$$\frac{(viable\ cell\ count)(5)(dilution)}{(chamber\ volume)} = \frac{(98\ cells)(5)(100)}{(.0001\ ml)} = 4.9\ x\ 10^8 cells/ml_{slurry}$$

$$\frac{Total~Cells~Needed}{yeast~cells/ml_{slurry}} = \frac{2.288~x~10^{13}cells}{4.9~x~10^8 yeast~cells/ml_{slurry}} = 4.67~x~10^4~ml_{slurry}$$

Calculation Example

Convert to gallons or pounds for easier use:

$$4.67 \times 10^4 \, ml_{slurry} \times \frac{1 \, gal_{slurry}}{3785 \, ml_{slurry}} = 12.34 \, gal_{slurry}$$

$$4.67 \times 10^4 g_{slurry} \times \frac{1 \, lb_{slurry}}{453.592 \, g_{slurry}} = \, 102.96 \, lbs_{slurry}$$

Determining Pitching Rate

- Non traditional pitching rates
 - Some fermentation flavors from expressive yeasts can be manipulated by intentional under or over pitching
 - Not all strains can perform well with under pitching, you still need to achieve attenuation
 - Rates of 750,000 cells per ml per degree plato in German Style Hefeweizen and Belgian styles have worked well balancing flavor and performance

Determining Pitching Rate

- High Gravity Beers
 - Over pitching high gravity beers typically leads to better attenuation rates
 - Can lead to lower flocculation and an abundance of yeast in the fermenter
- Beyond fermentation flavors
 - Yeast cells absorb isomerized alpha acids
 - Pitch rate effects finished IBU levels in beer
 - Consistent pitching rates will result in more consistent bitterness.

Beyond Primary Fermentation

- Determining the best time to filter beer
 - Establish a measureable target for prefiltration clarity
- Establishing consistent yeast levels in unfiltered beer.
 - Consistent haze and yeast count in beer package with yeast across several operators

Beyond Primary Fermentation

- Determining bottle or can conditioning pitching rates
 - Evaluate unfiltered beer prior to package
 - Determine fresh yeast dosing rates
 - To much yeast in the bottle leads to off flavors and shorter shelf life
 - Too little viable yeast can result in a failure to re-ferment in the bottle.
 - 500,000 cells/ml is sufficient if only a portion of final co2 is gained from bottle conditioning.
 - Over 1 million cells/ml can result in excessive yeast in the bottle.

Conclusion

- You monitor your mash temp, calculate IBUs and weigh out your grain already
- All are points of control that impact the final flavor of your beer
- Using a hemocytometer gives the brewer one more point of control to fine tune flavor and ultimately achieve a more consistent product.

Thank You

Steve Parkes – American Brewers Guild and Drop In Brewing Company Ray Romero – Brewers Supply Group The Brewers Association

> QUESTIONS? PHoey@BSGCraftBrewing.com